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1. Introduction

Fix a positive integer M and an alphabet {0, 1, . . . ,M}. By a sequence we mean an 
element c = (ci) of {0, 1, . . . ,M}∞.

Given a real base q > 1, by an expansion of a real number x we mean a sequence 
c = (ci) satisfying the equality

πq(c) :=
∞∑
i=1

ci
qi

= x.

Expansions of this type in non-integer bases have been extensively investigated since 
a pioneering paper of Rényi [29]. One of the striking features of such bases is that 
generically a number has a continuum of different expansions, a situation quite opposite 
to that of integer bases; see, e.g., [12] and Sidorov [31]. However, surprising unique 
expansions have also been discovered by Erdős et al. [13], and they have stimulated 
many works during the last 25 years.

We refer to the papers [23,6–9,3] and surveys [32,20,10] for more information.
Let us denote by Uq the set of numbers x having a unique expansion and by U ′

q

the set of the corresponding expansions. The topological and combinatorial structure of 
these sets have been described in [8]. The present paper is a natural sequel of this work, 
concerning the measure-theoretical aspects.

Daróczy and Kátai [5] have determined the Hausdorff dimension of Uq when M = 1
and q is a Parry number. Their results were extended by Kallós and Kátai [17–19], 
Glendinning and Sidorov [15], Kong et al. [25,24], and in [9,1].

We recall from [21] and [22] that there exists a smallest base 1 < q′ < M+1 (depending 
on M) in which x = 1 has a unique expansion: the so-called Komornik–Loreti constant.

We also recall two theorems on the dimension function

D(q) := dimH Uq, 1 < q < ∞,

obtained respectively in [15,25] and in [24]:

Theorem 1.1. The function D vanishes in (1, q′], and D > 0 in (q′, ∞). Its maximum 
D(q) = 1 is attained only in q = M + 1.

It follows from this theorem that Uq is a (Lebesgue) null set for all q �= M + 1, 
while UM+1 ⊆ [0, 1] has measure one because its complementary set is countable in 
[0, 1]. Since Uq \ Uq is countable for each q (see [8]), the same properties hold for Uq as 
well.

Theorem 1.2. For almost all q > 1, U ′
q is a subshift, and
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D(q) =
h(U ′

q)
log q , (1.1)

where h(U ′
q) denotes the topological entropy of U ′

q.
Furthermore, the function D is differentiable almost everywhere.

We recall from Lind and Marcus [26] that

h(U ′
q) = lim

n→∞

log |Bn(U ′
q)|

n
= inf

n≥1

log |Bn(U ′
q)|

n
(1.2)

when U ′
q is a subshift, where Bn(U ′

q) denotes the set of different initial words of length 
n occurring in the sequences (ci) ∈ U ′

q, and |Bn(U ′
q)| means the cardinality of Bn(U ′

q). 
(Unless otherwise stated, in this paper we use base two logarithms.)

We will complete and improve Theorems 1.1 and 1.2 in Theorems 1.3, 1.4 and 1.7
below.

Theorem 1.3. The formula (1.1) is valid for all q > 1.

We recall from [8] that U ′
q is not always a subshift. Theorem 1.3 states in particular 

that the limit in (1.2) exists even if U ′
q is not a subshift, and it is equal to the infimum 

in (1.2).

Theorem 1.4. The function D is continuous, and has bounded variation.

Theorem 1.4 implies again that D is differentiable almost everywhere. In order to 
describe its derivative first we establish some results on general β-expansions and on 
univoque bases.

Following Rényi [29] we denote by β(q) = (βi(q)) the lexicographically largest ex-
pansion of x = 1 in base q. It is also called the greedy or β-expansion of x = 1 in 
base q.

Theorem 1.5. Fix 1 < r ≤ M + 1 arbitrarily. For almost all q ∈ (1, r) there exist arbi-
trarily large integers m such that β1(q) · · ·βm(q) ends with more than logr m consecutive 
zero digits.

This theorem improves and generalizes [12, Theorem 2] concerning the case M = 1. 
In particular, our result implies that β(q) contains arbitrarily large blocks of consecutive 
zeros for almost all q ∈ (1, M + 1]. This was first established by Erdős and Joó [11] for 
M = 1, and their result was extended by Schmeling [30] for all M .

Next we denote by U the set of bases q > 1 in which x = 1 has a unique expansion, 
and by U its closure. The elements of U are usually called univoque bases.
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Fig. 1. Approximation plot for the graph of D(q) = dimH Uq with M = 8 and q ∈ (1, 12]. In this case 
q′ ≈ 5.80676, and D(q) = 1 only if q = M + 1 = 9.

Theorem 1.6.

(i) U and U are (Lebesgue) null sets.
(ii) U and U have Hausdorff dimension one.

This theorem was proved for U in case M = 1 by Erdős and Joó [11] and by Daróczy 
and Kátai [4], respectively. The case of U hence follows because the set U \U is countable 
(see [23]). Our proof of (ii) is shorter than the original one even for M = 1.

Finally, combining Theorems 1.1, 1.3, 1.4, 1.6 (i) and some topological results of [8]
we prove that the dimension function is a natural variant of Devil’s staircase (see Fig. 1):

Theorem 1.7.

(i) D is continuous in [q′, ∞).
(ii) D′ < 0 almost everywhere in (q′, ∞).
(iii) D(q′) < D(q) for all q > q′.

Remark. Compared to the classical Cantor function, we even have D′ < 0 instead of 
D′ = 0 almost everywhere.

The paper is organized as follows. In Section 2 we investigate the topological entropy 
of various subshifts that we need in the sequel. In Section 3 we prove Theorem 1.3 and we 
prepare the proof of Theorem 1.4. Theorem 1.4 is proved in Section 4, Theorems 1.5–1.6
in Sections 5–6, and Theorem 1.7 in Section 7. Sections 5–6 are independent of each 
other and of the other sections of the paper.

2. Topological entropies

We begin by proving that the topological entropy of U ′
q is well defined even if U ′

q is 
not a subshift:
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Lemma 2.1. The limit

h(U ′
q) := lim

n→∞

log |Bn(U ′
q)|

n

exists for each q > 1, and is equal to

inf
n≥1

log |Bn(U ′
q)|

n
.

Proof. It suffices to show that the function n �→ |Bn(U ′
q)| is submultiplicative, i.e.,

|Bm+n(U ′
q)| ≤ |Bm(U ′

q)| · |Bn(U ′
q)|

for all m, n ≥ 1.
Denoting by Bk,�(U ′

q) the set of words ck · · · c� where (ci) runs over U ′
q, we have clearly

|Bm+n(U ′
q)| = |B1,m+n(U ′

q)| ≤ |B1,m(U ′
q)| · |Bm+1,m+n(U ′

q)|.

Notice that |Bm+1,m+n(U ′
q)| ≤ |Bn(U ′

q)| because (cm+i) ∈ U ′
q for every (ci) ∈ U ′

q. This 
completes the proof. �
Lemma 2.2.

(i) If q ≥ M + 1, then h 
(
U ′
q

)
= log(M + 1).

(ii) If 1 < q < q′, then h 
(
U ′
q

)
= 0.

Proof. If q > M + 1, then U ′
q = {0, . . . ,M}∞ is the full shift. Therefore

h
(
U ′
q

)
= lim

n→∞

log
∣∣Bn(U ′

q)
∣∣

n
= lim

n→∞
log(M + 1)n

n
= log(M + 1).

If q = M + 1, then the above equalities remain valid. Indeed, we still have 
Bn(U ′

q) = {0, . . . ,M}n for all n ≥ 1 because c1 · · · cn(0M)∞ ∈ U ′
q for every word 

c1 · · · cn ∈ {0, . . . ,M}n.
The case 1 < q < q′ follows from Theorem 1.2 because U ′

q is countable by [15] (for 
M = 1) and [8,25,24] (for all M ≥ 1) and therefore D(q) = 0. �

Henceforth we assume that q′ ≤ q ≤ M + 1. Then x = 1 has an expansion.
We start by recalling some properties of the greedy and quasi-greedy expansions. 

We denote by β(q) = (βi(q)) the greedy, i.e., the lexicographically largest expansion of 
x = 1 in base q. Furthermore, we denote by α(q) = (αi(q)) the quasi-greedy, i.e., the 
lexicographically largest infinite expansion of x = 1 in base q. Here and in the sequel an 
expansion is called infinite if it contains infinitely many non-zero digits.
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Greedy expansions were introduced by Rényi [29], and they were characterized by 
Parry [28]. Quasi-greedy expansions were introduced by Daróczy and Kátai [4,5], in 
order to give an elegant Parry type characterization of unique expansions:

Lemma 2.3. A sequence (ci) belongs to U ′
q if and only if the following two conditions are 

satisfied:

(cn+i) < α(q) whenever c1 . . . cn �= Mn,

(cn+i) < α(q) whenever c1 . . . cn �= 0n.

Here for a sequence c = (ci) we denote by c = (M − ci), and for a word c1 · · · ck we 
write c1 · · · ck = (M − c1) · · · (M − ck).

We also recall some results on the relationship between greedy and quasi-greedy ex-
pansions, and on their continuity properties:

Lemma 2.4.

(i) If β(q) is infinite, then α(q) = β(q). Otherwise, β(q) has a last non-zero digit βm(q), 
and α(q) is periodic with the period β1(q) · · ·βm−1(q)(βm(q) − 1).

(ii) If qn ↗ q, then α(qn) → α(q) component-wise.
(iii) If qn ↘ q, then β(qn) → β(q) component-wise.

See, e.g., [2,8] and [9] for proofs.
Instead of U ′

q and Uq it will be easier to consider the slightly modified sets

Ũ ′
q :=

{
(ci) : α(q) < (cm+i) < α(q) for all m = 0, 1, . . .

}
and

Ũq := πq(Ũ ′
q) =

{ ∞∑
i=1

ci
qi

: (ci) ∈ Ũ ′
q

}
.

Lemma 2.5.

(i) Uq is the union of 0, M/(q − 1), and of countably many sets, each similar to Ũq.
(ii) U ′

q and Ũ ′
q have the same topological entropy.

Proof. (i) Let (ci) ∈ U ′
q be different from 0∞ and M∞. If 0 < c1 < M , then (c1+i) ∈ Ũ ′

q

by Lemma 2.3.
If c1 = 0, then there exists a smallest m > 1 such that cm > 0, and (cm+i) ∈ Ũ ′

q by 
Lemma 2.3.

If c1 = M , then there exists a smallest m > 1 such that cm < M , and (cm+i) ∈ Ũ ′
q by 

Lemma 2.3.
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It follows that Uq is the union of 0, M/(q − 1), and of the sets

c1
q

+ 1
q
Ũq, c1 = 1, . . . ,M − 1,

cm
qm

+ 1
qm

Ũq, m = 2, 3, . . . , cm = 1, . . . ,M,(
m−1∑
i=1

M

qi

)
+ cm

qm
+ 1

qm
Ũq, m = 2, 3, . . . , cm = 0, . . . ,M − 1.

We conclude by observing that all these sets are similar to Ũq.
(ii) The above reasoning shows also that each word of Bn(U ′

q) has the form 0kMm−kw

or Mk0m−kw with some word w ∈ Bn−m(Ũ ′
q) and some integers k, m satisfying 0 ≤ k ≤

m ≤ n. Hence

∣∣Bn(U ′
q)
∣∣ ≤ n∑

m=0
2(m + 1)

∣∣∣Bn−m(Ũ ′
q)
∣∣∣ ≤ (n + 1)(2n + 2)

∣∣∣Bn(Ũ ′
q)
∣∣∣ .

Since Ũ ′
q ⊆ U ′

q, it follows that

lim
n→∞

log
∣∣∣Bn(Ũ ′

q)
∣∣∣

n
≤ lim

n→∞

log
∣∣Bn(U ′

q)
∣∣

n

≤ lim
n→∞

log(2n + 2)2
∣∣∣Bn(Ũ ′

q)
∣∣∣

n

= lim
n→∞

log
∣∣∣Bn(Ũ ′

q)
∣∣∣

n
+ lim

n→∞
2 log(2n + 2)

n

= lim
n→∞

log
∣∣∣Bn(Ũ ′

q)
∣∣∣

n
,

whence h(Ũ ′
q) = h(U ′

q). �
Remark. Since U ′

q and Ũ ′
q are not always subshifts, it will be useful to introduce the 

related set V ′
q of the sequences (ci) satisfying the inequalities in Lemma 2.3 with “<” 

replaced by “≤”, and the set

Ṽ ′
q :=

{
(ci) : α(q) ≤ (cm+i) ≤ α(q) for all m = 0, 1, . . .

}
.

Furthermore, we define Vq := πq(V ′
q) and Ṽq := πq(Ṽ ′

q).
Lemma 2.5 and its proof remain valid if Uq, Ũq, U ′

q and Ũ ′
q are replaced by Vq, Ṽq, V ′

q

and Ṽ ′
q.
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Lemma 2.6. Ṽ ′
q is a subshift, and Ũ ′

q ⊆ Ṽ ′
q.

Proof. If q = M + 1, then α(q) = M∞, so that Ṽ ′
q = {0, 1, · · · ,M}∞ is the full shift.

Henceforth assume that q < M+1, and consider the set F of all finite blocks d1 · · · dn ∈
{0, . . . ,M}n (of arbitrary length), satisfying one of the lexicographic inequalities

d1 · · · dn < α1(q) · · ·αn(q) and d1 · · · dn > α1(q) · · ·αn(q).

By definition, none of these blocks appear in any (ci) ∈ Ṽ ′
q.

Conversely, if (ci) ∈ {0, 1, · · · ,M}∞ \ Ṽ ′
q, then there is a positive integer m such that 

either

cmcm+1 · · · < α(q)

or

cmcm+1 · · · > α(q),

and hence there is another positive integer n such that either

cm · · · cm+n < α1(q) · · ·αn(q)

or

cm · · · cm+n > α1(q) · · ·αn(q).

Hence (ci) contains at least one block from F .
The inclusion Ũ ′

q ⊆ Ṽ ′
q is obvious from the definition. �

Since Ũ ′
q is not always a subshift of finite type, we introduce for each positive integer 

n the set Ũ ′
q,n of sequences (ci) satisfying for all m = 0, 1, . . . the inequalities

α1(q) · · ·αn(q) < cm+1 · · · cm+n < α1(q) · · ·αn(q).

Similarly, we define the sets Ṽ ′
q,n and W̃ ′

q,n by replacing the above inequalities by

α1(q) · · ·αn(q) ≤ cm+1 · · · cm+n ≤ α1(q) · · ·αn(q)

and

β1(q) · · ·βn(q) ≤ cm+1 · · · cm+n ≤ β1(q) · · ·βn(q),

respectively.
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Lemma 2.7. Ũ ′
q,n, Ṽ ′

q,n and W̃ ′
q,n are subshifts of finite type, and

Ũ ′
q,n ⊆ Ũ ′

q ⊆ Ṽ ′
q ⊆ Ṽ ′

q,n ⊆ W̃ ′
q,n (2.1)

for all n.
Furthermore, the sets Ũ ′

q,n are increasing, while Ṽ ′
q,n and W̃ ′

q,n are decreasing when n
is increasing.

Proof. It is clear that Ũ ′
q,n is characterized by the finite set of forbidden blocks d1 · · · dn ∈

{0, . . . ,M}n satisfying the lexicographic inequalities

d1 · · · dn ≤ α1(q) · · ·αn(q) or d1 · · · dn ≥ α1(q) · · ·αn(q).

Hence it is a subshift of finite type.
The proof for Ṽ ′

q,n and W̃ ′
q,n is analogous.

The remaining assertions follow from the definition of lexicographic inequalities. �
We are going to show that these sets well approximate Ũ ′

q:

Proposition 2.8. For q ∈ [q′, M + 1] we have

lim
n→∞

h(Ũ ′
q,n) = lim

n→∞
h(Ṽ ′

q,n) = lim
n→∞

h(W̃ ′
q,n) = h(Ũ ′

q) = h(Ṽ ′
q).

The proof of the proposition is divided into a series of lemmas.

Lemma 2.9. Let q′ ≤ q < p ≤ M + 1. Then

W̃ ′
q,n ⊆ Ũ ′

p,n

for all sufficiently large n.

Proof. Since there are only countably many finite greedy expansions, the set

{r ∈ (1,M + 1] : β(r) �= α(r)}

is countable. There exists therefore r ∈ (q, p) such that β(r) = α(r), and then

β(q) < β(r) = α(r) < α(p)

because the maps r �→ β(r) and r �→ α(r) are strictly increasing by the definition of the 
greedy and quasi-greedy algorithms.

Fix a sufficiently large n such that

α1(p) · · ·αn(p) > β1(q) · · ·βn(q).
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If d = (di) ∈ W̃ ′
q,n, then

dm+1 · · · dm+n ≤ β1(q) · · ·βn(q) < α1(p) · · ·αn(p)

and symmetrically

dm+1 · · · dm+n ≥ β1(q) · · ·βn(q) > α1(p) · · ·αn(p)

for all m ≥ 0, i.e., d ∈ Ũ ′
p,n. �

We recall that U is the set of bases q > 1 in which x = 1 has a unique expansion, and 
U is its closure. Furthermore, we recall from [23] that q ∈ U if and only if

α1(q)α2(q) · · · < αk+1(q)αk+2(q) · · · ≤ α1(q)α2(q) · · · (2.2)

for all k ≥ 0. Moreover, there exists infinitely many indices n such that

α1(q) · · ·αn−k(q) < αk+1(q) · · ·αn(q) ≤ α1(q) · · ·αn−k(q) (2.3)

for all 0 ≤ k ≤ n − 1. In particular, αn(q) > 0 for these indices.

Lemma 2.10. Let q ∈ U and (αi) = α(q).

(i) For each n ≥ 1, Bn(Ṽ ′
q) = Bn(Ṽ ′

q,n) is the set of words d1 · · · dn satisfying

α1 · · ·αn−k ≤ dk+1 · · · dn ≤ α1 · · ·αn−k (2.4)

for all 0 ≤ k ≤ n − 1.
(ii) For each n ≥ 1 satisfying (2.3), Bn(Ũ ′

q,n) is the set of words d1 · · · dn satisfying

α1 · · ·αn < d1 · · · dn < α1 · · ·αn, (2.5)

and relations (2.4) for all 1 ≤ k ≤ n − 1.
(iii) If n ≥ 1 satisfies (2.3), then

Bn(Ṽ ′
q,n) \Bn(Ũ ′

q,n) =
{
α1(q) . . . αn(q), α1(q) . . . αn(q)

}
.

Proof. (i) Note that Bn(Ṽ ′
q) ⊆ Bn(Ṽ ′

q,n), and that each word of Bn(Ṽ ′
q,n) satisfies the 

relations (2.4). It remains to prove that if a word d1 · · · dn satisfies the relations (2.4) for 
all 0 ≤ k ≤ n − 1, then it belongs to Bn(Ṽ ′

q).
Let 0 ≤ k1 ≤ n be the first integer such that either

dk1+1 · · · dn = α1 · · ·αn−k1
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or

dk1+1 · · · dn = α1 · · ·αn−k1 .

(We choose k1 = n if all inequalities in (2.4) are strict.) Assume by symmetry that

dk1+1 · · · dn = α1 · · ·αn−k1 . (2.6)

The minimality of k1 implies that

α1 · · ·αn−k < dk+1 · · · dn < α1 · · ·αn−k for any 0 ≤ k < k1.

Combining this with (2.2) we conclude that

d1 · · · dnαn−k1+1αn−k1+2 · · · = d1 · · · dk1α1α2 · · · ∈ Ṽ ′
q;

hence d1 · · · dn ∈ Bn(Ṽ ′
q).

(ii) Take n satisfying (2.3), and note that each word of Bn(Ũ ′
q,n) satisfies the above 

mentioned relations. It remains to prove that if a word d1 · · · dn satisfies (2.5), and 
relations (2.4) for all 1 ≤ k ≤ n − 1, then it belongs to Bn(Ũ ′

q,n).
Choosing k1 as in (i), now we have k1 ≥ 1. We may assume (2.6) again. Using (2.3)

it follows that αn > 0 and

αk+1 · · ·αn−1α
−
n ≥ α1 · · ·αn−k and α1 · · ·αk > αn−k+1 · · ·αn

for all 0 ≤ k ≤ n − 1 and 1 ≤ k ≤ n, respectively, where we write α−
n := αn − 1. Hence

d1 · · · dn(αn−k1+1 · · ·αn−1α
−
nα1 · · ·αn−k1)∞ = d1 · · · dk1(α1 · · ·αn−1α

−
n )∞ ∈ Ũ ′

q,n,

and therefore d1 · · · dn ∈ Bn(Ũ ′
q,n).

(iii) This follows from (i), (ii) and (2.2). �
The following lemma was essentially proved during the proof of [24, Theorem 2.6]. We 

briefly indicate an alternative proof based on some results of [8]. The set U was defined 
in the introduction.

Lemma 2.11. If p and q belong to the same connected component of (1, ∞) \ U , then 
h(U ′

p) = h(U ′
q) and h(Ũ ′

p) = h(Ũ ′
q).

Proof. The two equalities being equivalent by Lemma 2.5, we only prove the first one.
Consider a connected component I = (q0, q∗0). By [8, Theorems 1.6 and 1.7] there 

exists a sequence (qn) satisfying q0 < q1 < · · · and converging to q∗0 , and such that 
U ′
q = V ′

q for all q ∈ (qn, qn+1], n = 0, 1, . . . . (See the definition of V ′
q in the remark 
n
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following Lemma 2.5.) This implies that h(U ′
q) is constant in each interval (qn, qn+1]. It 

remains to show that h(U ′
qn) = h(U ′

qn+1
), or equivalently that h(U ′

qn) = h(V ′
qn) for each 

n ≥ 1.
Assume for the moment that Ũ ′

qn = Ũ ′
qn,k

and Ṽ ′
qn = Ṽ ′

qn,2k for some positive integer k. 
Then by Lemma 2.7 they hold for all larger values of k as well. Applying Lemma 3.2
below (its proof will not depend on the present section) with p = qn and a sufficiently 
large k in place of n(qn), it follows that

dimH(Ũqn) =
h(Ũ ′

qn)
log qn

and dimH(Ṽqn) =
h(Ṽ ′

qn)
log qn

.

Applying Lemma 2.5 and the following remark they yield

dimH(Uqn) =
h(U ′

qn)
log qn

and dimH(Vqn) =
h(V ′

qn)
log qn

.

The equality h(U ′
qn) = h(V ′

qn) follows because Uqn and Vqn differ by a countable set 
by [8, Theorem 1.4 (ii)], and hence they have the same Hausdorff dimension.

Now we prove the equalities Ũ ′
qn = Ũ ′

qn,k
and Ṽ ′

qn = Ṽ ′
qn,2k. We have α(qn) =

(α1 · · ·αkα1 · · ·αk)∞ with a minimal even period 2k, and αk > 0. The proof of [8, 
Theorem 1.8] shows that (ci) ∈ Ũ ′

qn is equivalent to

α1 · · ·αk < cm+1 · · · cm+k < α1 · · ·αk for all m ≥ 0,

i.e., to (ci) ∈ Ũ ′
qn,k

.
Next we recall that writing α1 · · ·α−

k := α1 · · ·αk−1(αk − 1) we have

α(qn+1) = (α1 · · ·αkα1 · · ·α−
k α1 · · ·αkα1 · · ·α−

k )∞

with a minimal even period 4k. Since Ṽ ′
qn = Ũ ′

qn+1
, hence (ci) ∈ Ṽ ′

qn is equivalent to

α1 · · ·αkα1 · · ·α−
k < cm+1 · · · cm+2k < α1 · · ·αkα1 · · ·α−

k for all m ≥ 0,

or equivalently to

α1 · · ·αkα1 · · ·αk ≤ cm+1 · · · cm+2k ≤ α1 · · ·αkα1 · · ·αk for all m ≥ 0.

The last relation is the definition of (ci) ∈ Ṽ ′
qn,2k. �

Finally we recall the Perron–Frobenius Theorem (see [26, Theorem 4.4.4]):

Lemma 2.12. Let G(n) be an edge graph representation of Ũ ′
q,n, and λn its spectral radius. 

Then there exist positive constants c1, c2 such that
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c1λ
k
n ≤ |Bk(Ũ ′

q,n)| ≤ c2k
sλk

n

for all k ≥ 1, where s denotes the number of strongly connected components of G(n).
If G(n) is strongly connected, then the factor ks may be omitted in the second inequal-

ity.

Proof of Proposition 2.8. All indicated topological entropies are well defined by Lem-
mas 2.6 and 2.7. Furthermore, the monotonicity of the set sequences (Ũ ′

q,n), (Ṽ ′
q,n) and 

(W̃ ′
q,n) implies the existence of the indicated limits as n → ∞.
If q ∈ [q′, M+1] \U , then q ∈ (q′, M+1) (because q′, M+1 ∈ U). Applying Lemma 2.11

we may choose a neighborhood (q1, q2) of q such that h(Ũ ′
p) = h(Ũ ′

q) for all p ∈ [q1, q2]. 
Using Lemmas 2.7 and 2.9 we obtain that

Ũ ′
q1 ⊆ Ũ ′

q,n ⊆ W̃ ′
q,n ⊆ Ũ ′

q2

for all sufficiently large indices n, and therefore

lim
n→∞

h(Ũ ′
q,n) = lim

n→∞
h(W̃ ′

q,n) = h(Ũ ′
q).

Henceforth we assume that q ∈ U . In view of the inclusions (2.1) it is sufficient to 
prove that

lim
n→∞

h(W̃ ′
q,n) ≤ h(Ṽ ′

q) (2.7)

and

lim
n→∞

h(Ṽ ′
q,n) ≤ lim

n→∞
h(Ũ ′

q,n). (2.8)

First we show that

|Bn(W̃ ′
q,n)| ≤ 2(n + 1)2|Bn(Ṽ ′

q)|

for all n ≥ 1. If α(q) = β(q), then W̃ ′
q,n = Ṽ ′

q,n and therefore by Lemma 2.10 we have 

Bn(W̃ ′
q,n) = Bn(Ṽ ′

q) for all n.
If α(q) �= β(q), then β(q) has a last nonzero digit βm, and by Lemma 2.4 α(q) is 

periodic with the period β1(q) · · ·βm−1(q)β−
m(q). In this case, if d1 · · · dn ∈ Bn(W̃ ′

q,n) \
Bn(Ṽ ′

q), then for any 0 ≤ k ≤ n − 1

β1(q) · · ·βn−k(q) ≤ dk+1 · · · dn ≤ β1(q) · · ·βn−k(q),

and by Lemma 2.10 it follows that there exists a least integer 0 ≤ k ≤ n − 1 such that 
either
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dk+1 · · · dn < α1(q) · · ·αn−k(q)

or

dk+1 · · · dn > α1(q) · · ·αn−k(q).

This implies that dk+1 · · · dn or dk+1 · · · dn must be of the form

(α1(q) · · ·αm(q))jβ1(q) · · ·βn−k−mj(q), j = 0, 1, · · · , [(n− k)/m].

The number of these words can not exceed 2(n + 1). Moreover, by the minimality of k
and Lemmas 2.7, 2.10 it follows that

d1 · · · dk ∈ Bk(Ṽ ′
q,k) = Bk(Ṽ ′

q) = Bk(Ṽ ′
q,n).

Hence

|Bn(W̃ ′
q,n)| − |Bn(Ṽ ′

q,n)| = |Bn(W̃ ′
q,n) \Bn(Ṽ ′

q,n)|

≤ 2(n + 1)
n−1∑
k=0

|Bk(Ṽ ′
q,n)| ≤ 2n(n + 1)|Bn(Ṽ ′

q,n)|,

and the required estimate follows.
Using this estimate we have

h(W̃ ′
q,n) = inf

k≥1

log |Bk(W̃ ′
q,n)|

k
≤

log |Bn(W̃ ′
q,n)|

n

≤
log |Bn(Ṽ ′

q)| + log 2 + 2 log(n + 1)
n

.

Letting n → ∞ the relation (2.7) follows.
Turning to the proof of the relation (2.8), first we consider the case q = q′. Using (2.1)

and (2.7) it follows that

lim
n→∞

h(Ṽ ′
q,n) = h(Ṽ ′

q).

Furthermore, we also deduce from (2.1) and Lemma 2.10 that

|Bnk
(Ṽ ′

q) \Bnk
(Ũ ′

q)| ≤ |Bnk
(Ṽq,nk

) \Bnk
(Ũ ′

q,nk
)| = 2,

where (nk) is a sequence of indices satisfying (2.3). Hence
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h(Ṽ ′
q) = lim

n→∞

log |Bn(Ṽ ′
q)|

n
= lim

k→∞

log |Bnk
(Ṽ ′

q)|
nk

≤ lim
k→∞

log
(
|Bnk

(Ũ ′
q)| + 2

)
nk

= h(Ũ ′
q).

The existence of the last limit and the last equality follows from Lemma 2.1.
Since h(Ũ ′

q) = 0 for q = q′ by Theorem 1.1, we conclude that

lim
n→∞

h(Ṽ ′
q,n) = 0.

Assume henceforth that q > q′, so that h(Ũ ′
q) > 0. This was proved in [15] for 

M = 1, and the proof remains valid for all odd values of M , and in [25, Lemma 4.10]
for M = 2, 4, . . . . For each n ≥ N we have h(Ũ ′

q,n) = log λn with the notations of 
Lemma 2.12, and

λn ≥ λN > 1

by the increasing property of the set sequence (Ũ ′
q,n). We are going to estimate the size 

of Bk(Ṽ ′
q,n) \Bk(Ũ ′

q,n) for each fixed n ≥ N satisfying (2.3) and k ≥ n.
Let us denote by G′(n) the edge graph representing Ṽ ′

q,n, and set u = α1(q) · · ·αn(q). 
Then G(n) is a subgraph of G′(n), and the words u and u are forbidden in G(n). We 
seek an upper bound for |Bk(Ṽ ′

q,n) \Bk(Ũ ′
q,n)|.

Suppose that d1 · · · dk ∈ Bk(Ṽ ′
q,n) \Bk(Ũ ′

q,n). Then by Lemma 2.10 it follows that the 
word d1 · · · dk must contain at least once u or u. If it contains exactly r ≥ 1 times u or 
u, then it has the form

d1 · · · dk = ω0τ1ω1 · · · τrωr

where each τj is equal to u or u, and k0 + · · · + kr = k − rn, where kj ≥ 0 denotes the 
length of ωj .

Assuming first that the graph G(n) is strongly connected, we may apply Lemma 2.12
without the factor ks. Assuming without loss of generality that c1 ≤ 1 ≤ c2, we obtain 
the following estimate:

|Bk(Ṽ ′
q,n)| ≤ |Bk(Ũ ′

q,n)| +
[k/n]∑
r=1

∑
k0+···+kr=k−nr

2r
r∏

j=0
(c2λkj

n )

= |Bk(Ũ ′
q,n)| + c2λ

k
n

[k/n]∑
r=1

∑
k0+···+kr=k−nr

(2c2λ−n
n )r

= |Bk(Ũ ′
q,n)| + c2λ

k
n

[k/n]∑ (
k − r(n− 1)

r

)
(2c2λ−n

n )r

r=1
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≤ |Bk(Ũ ′
q,n)| + c2λ

k
n

k∑
r=1

(
k

r

)
(2c2λ−n

n )r

≤ |Bk(Ũ ′
q,n)|c2

c1

k∑
r=0

(
k

r

)
(2c2λ−n

n )r

= |Bk(Ũ ′
q,n)|c2

c1
(1 + 2c2λ−n

n )k

≤ |Bk(Ũ ′
q,n)|c2

c1
(1 + 2c2λ−n

N )k.

If the graph G(n) is not strongly connected, then we distinguish two cases:

• If u and u belong to the same strongly connected component of G′(n), then we have 
to change c2λ

kj
n to c2ksjλ

kj
n in the above estimate for j = 0 and j = r.

• If u and u belong to different strongly connected components of G′(n), then for 
each d1 · · · dk there is an index 0 ≤ r′ ≤ r such that either τj = u ⇐⇒ j ≤ r′ or 
τj = u ⇐⇒ j > r′. Then we may change the above factor 2r to r + 1, and we have 
to change c2λ

kj
n to c2ksjλ

kj
n for j = 0, j = r′ and j = r.

Summarizing, we obtain in all cases the following estimate:

|Bk(Ṽ ′
q,n)| ≤ |Bk(Ũ ′

q,n)|c2
c1

k3s(1 + 2c2λ−n
N )k.

It follows that

log |Bk(Ṽ ′
q,n)|

k
≤

log |Bk(Ũ ′
q,n)|

k
+ log(c2/c1)

k
+ 3s log k

k
+ log(1 + 2c2λ−n

N )

for all k ≥ n. Letting k → ∞ we conclude that

h(Ṽ ′
q,n) ≤ h(Ũ ′

q,n) + log(1 + 2c2λ−n
N )

for all n ≥ N satisfying (2.3). Since λN > 1, taking n satisfying (2.3) and letting n → ∞
we get (2.8). �
3. Proof of Theorem 1.3

First we consider the cases 1 < q < q′ and q ≥ M + 1.

Lemma 3.1.

(i) The formula (1.1) holds for 1 < q < q′ with D(q) = h(U ′
q) = 0.

(ii) The formula (1.1) holds for all q ≥ M + 1 with h(U ′
q) = log(M + 1).
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Proof. (i) We have shown in Lemma 2.2 that h(U ′
q) = 0. Since Uq is countable (see the 

proof of Lemma 2.2), we have also D(q) = 0.
(ii) We have shown in Lemma 2.2 that h(U ′

q) = log(M + 1).
Since [0, 1] \ UM+1 and {0, . . . ,M}∞ \ U ′

M+1 are countable, we have D(M + 1) = 1
and h 

(
U ′
M+1

)
= log(M + 1).

If q > M + 1, then U ′
q = {0, . . . ,M}∞, so that h 

(
U ′
q

)
= log(M + 1), and Uq is a 

self-similar set satisfying the relation

Uq =
M⋃
j=0

(
j

q
+ 1

q
Uq

)
.

The union is disjoint because each x ∈ Uq has a unique expansion.
Observe that Uq is a non-empty compact set. Indeed, it is bounded because Uq ⊆

[0, M/(q − 1)]. It remains to show that it is closed, i.e., if (xk) ⊂ Uq converges to some 
real number x, then x ∈ Uq.

If two expansions (ai) and (bi) first differ at the mth position, then∣∣∣∣∣
∞∑
i=1

ai
qi

−
∞∑
i=1

bi
qi

∣∣∣∣∣ ≥ 1
qm

−
∞∑

i=m+1

M

qi
= q −M − 1

qm(q − 1) > 0.

Using this estimate we obtain that the expansion of xk converges component-wise to 
some sequence (ci), and that (ci) is the (necessarily unique) expansion of x.

Applying [16] (see also [14, Proposition 9.7]) we conclude that r := D(q) is the solution 
of the equation (M + 1)q−r = 1, yielding

D(q) = log(M + 1)
log q . �

In view of Theorem 1.1 and Lemma 3.1 it remains to investigate the dimension func-
tion

D(q) = dimH Uq = dimH Ũq

for q′ ≤ q ≤ M + 1. (The second equality follows from Lemma 3.1 (i).)

Lemma 3.2. Let q ∈ [q′, M + 1). There exists a positive integer n(q) and a real number 
ε(q) > 0 such that

dimH πp(Ũ ′
q,n) =

h(Ũ ′
q,n)

log p and dimH πp(Ṽ ′
q,n) =

h(Ṽ ′
q,n)

log p

for all n ≥ n(q) and p ∈ (q − ε(q), q].
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Proof. The two cases being similar, we consider only that of Ṽ ′
q,n.

Fix two positive integers n > N satisfying αN (q) < M and qn−N (q − 1) > M . Let 
p ∈ (q′, q] be sufficiently close to q such that

pn−N (p− 1) > M and αi(p) = αi(q), i = 1, . . . , n.

We already know that Ṽ ′
q,n is a subshift of finite type corresponding to the finite 

set Fn of forbidden blocks d1 · · · dn ∈ {0, . . . ,M}n satisfying one of the lexicographic 
inequalities

d1 · · · dn < α1(q) · · ·αn(q) and d1 · · · dn > α1(q) · · ·αn(q).

We are going to prove that πp(Ṽ ′
q,n) is a graph-directed set satisfying the strong separa-

tion condition: then we may conclude by using the results of Mauldin and Williams [27]. 
We argue similarly to [24, Lemma 6.4].

Let us denote by G = (G, V, E) the edge graph with the vertex set

V := Bn−1(Ṽ ′
q,n) =

{
d1 · · · dn−1 ∈ {0, . . . ,M}n−1 : (di) ∈ Ṽ ′

q,n

}
.

For two vertices u = u1 · · ·un−1 and v = v1 · · · vn−1 we draw an edge uv ∈ E from u to 
v and label it 	uv = u1 if

u2 · · ·un−1 = v1 · · · vn−2 and u1 · · ·un−1vn−1 /∈ Fn.

Then the edge graph G = (G, V, E) is a representation of Ṽ ′
q,n (see [26]).

For u = u1 · · ·un−1 ∈ V we set

Ku :=
{ ∞∑

i=1

di
pi

: d1 · · · dn−1 = u1 · · ·un−1, and dm+1 · · · dm+n /∈ Fn for all m ≥ 0
}
.

For each edge uv ∈ E with vertices

u = u1 · · ·un−1, v = v1 · · · vn−1

we define

fuv(x) := x + 	uv
p

= x + u1

p
.

Then

πp(Ṽ ′
q,n) =

⋃
u∈V

Ku =
⋃
u∈V

⋃
uv∈E

fuv(Kv),

so that πp(Ṽ ′
q,n) is a graph-directed set (see [27]).
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Denote by A the adjacency matrix corresponding to the edge graph G = (G, V, E). 
Applying [26, Theorem 4.4.4] we have

h(Ṽ ′
q,n) = log r(A), (3.1)

where r(A) is the spectral radius of A.
Assume for the moment that the graph-directed iterated function system {fuv(·) :

uv ∈ E} satisfies the strong separation condition. Then applying [27, Theorem 4] we 
obtain that s = dimH πp(Ṽ ′

q,n) satisfies the equality

p−sr(A) = r(p−sA) = 1.

Taking logarithm and using (3.1) we conclude that

dimH πp(Ṽ ′
q,n) = s = log r(A)

log p =
h(Ṽ ′

q,n)
log p .

It remains to verify the strong separation condition, i.e., the relation

fuv(Kv) ∩ fuv′(Kv′) = ∅

for all uv, uv′ ∈ E with v �= v′.
Consider two such edges, and write

u = u1 · · ·un−1, v = v1 · · · vn−1 and v′ = v′1 · · · v′n−1.

Then

v1 · · · vn−2 = u2 · · ·un−1 = v′1 · · · v′n−2.

Assuming by symmetry that vn−1 < v′n−1, it suffices to show that fuv(x) < fuv′(y) for 
all

x = πp(v1 · · · vn−1c1c2 · · · ) ∈ Kv and y = πp(v′1 · · · v′n−1d1d2 · · · ) ∈ Kv′ .

This inequality is equivalent to

n−1∑
i=1

ui

pi
+ vn−1

pn
+ 1

pn

∞∑
i=1

ci
pi

<
n−1∑
i=1

ui

pi
+

v′n−1
pn

+ 1
pn

∞∑
i=1

di
pi
,

and hence to

πp(c) < v′n−1 − vn−1 + πp(d).
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The last inequality follows from our choice of N and p at the beginning of the proof 
and from the form of the forbidden blocks. Indeed, using the relations

αk+1(q) · · ·αk+N (q) ≤ MN−1(M − 1) k = 0, 1, 2, . . .

we have

πp(c) ≤ πp

(
(MN−1(M − 1))∞

)
= M

p− 1 − 1
pN − 1

<
M

p− 1 − M

pn(p− 1) = πp(Mn0∞)

= πp(α1(q) · · ·αn(q) 0∞) + πp(α1(q) · · ·αn(q) 0∞)

< πp(α(p)) + πp(d) = 1 + πp(d)

≤ v′n−1 − vn−1 + πp(d). �
Lemma 3.3. Let q ∈ [q′, M + 1). There exists a positive integer n(q) and a real number 
ε(q) > 0 such that

dimH πp(Ũ ′
q,n) =

h(Ũ ′
q,n)

log p and dimH πp(W̃ ′
q,n) =

h(W̃ ′
q,n)

log p

for all n ≥ n(q) and p ∈ [q, q + ε(q)).

Proof. We only give the proof for W̃ ′
q,n.

Fix two positive integers n > N satisfying βN (q) < M and qn−N (q − 1) > M . Let 
p ∈ [q, M + 1) be sufficiently close to q such that

βi(p) = βi(q), i = 1, . . . , n.

Since p ≥ q, we have also pn−N (p − 1) > M .
Similarly to the proof of Lemma 3.2 we construct an edge graph representing W̃ ′

q,n, 
so that πp(W̃ ′

q,n) is a graph-directed set. Then it suffices to prove that the corresponding 
iterated function system satisfies the open set condition, i.e.,

πp(c) < 1 + πp(d)

for all c, d ∈ W̃ ′
q,n.

This follows again from our choice of N and p at the beginning of the proof. Indeed, 
using the relations

βk+1(q) · · ·βk+N (q) ≤ MN−1(M − 1) k = 0, 1, 2, . . .

we have



V. Komornik et al. / Advances in Mathematics 305 (2017) 165–196 185
πp(c) ≤ πp

(
(MN−1(M − 1))∞

)
= M

p− 1 − 1
pN − 1

<
M

p− 1 − M

pn(p− 1) = πp(Mn0∞)

= πp(β1(q) · · ·βn(q) 0∞) + πp(β1(q) · · ·βn(q) 0∞)

< πp(β(p)) + πp(d) = 1 + πp(d). �
We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. In view of Lemma 3.1 we may assume that q ∈ [q′, M + 1).
We apply the first relation of the preceding lemma with p = q. Letting n → ∞ and 

using Lemma 2.7 and Proposition 2.8 we obtain that

dimH Ũq =
h(Ũ ′

q)
log q .

Since dimH Ũq = dimH Uq and h(Ũ ′
q) = h(U ′

q) by Lemma 2.5, the equality (1.1) fol-
lows. �
4. Proof of Theorem 1.4

In view of Lemma 3.1 it suffices to prove the theorem for q ∈ [q′, M + 1].

Lemma 4.1. The function D is left continuous in every q ∈ [q′, M + 1].

Proof. Fix q ∈ [q′, M + 1] and ε > 0 arbitrarily. We have to show that if p ∈ (1, q) is 
sufficiently close to q, then |D(p) −D(q)| < ε. The proof will be split into the following 
two cases.

Case I: q ∈ [q′, M + 1). Using Proposition 2.8 we fix a sufficiently large index n such 
that

h(Ṽ ′
q,n) − h(Ũ ′

q,n) < ε log q
2 .

Next we fix pn ∈ (q′, q) sufficiently close to q, such that

αi(pn) = αi(q) for i = 1, . . . , n.

If p ∈ (pn, q), then using the inclusions

Ũ ′
q,n ⊆ Ũ ′

p ⊆ Ũ ′
q ⊆ Ṽ ′

q,n

and applying Lemma 3.2 we obtain
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h(Ũ ′
q,n)

log p = dimH πp(Ũ ′
q,n) ≤ dimH Ũp ≤ dimH πp(Ṽ ′

q,n) =
h(Ṽ ′

q,n)
log p

and

h(Ũ ′
q,n)

log q = dimH πq(Ũ ′
q,n) ≤ dimH Ũq ≤ dimH πq(Ṽ ′

q,n) =
h(Ṽ ′

q,n)
log q .

It follows that

|D(p) −D(q)| ≤
h(Ṽ ′

q,n)
log p −

h(Ũ ′
q,n)

log q

=
h(Ṽ ′

q,n) − h(Ũ ′
q,n)

log p + h(Ũ ′
q,n)

(
1

log p − 1
log q

)
<

ε log q
2 log p + h(Ũ ′

q,n)
(

1
log p − 1

log q

)
.

If p ∈ (pn, q) is close enough to q, then the right side is < ε.

Case II: q = M +1. Since D(q) = 1 and 0 ≤ D(p) ≤ 1 for all p, it is sufficient to show 
that D(p) > 1 − ε for all p ∈ (1, q), close enough to q.

Since h(Ũ ′
q) = log q = log(M + 1) > 0 by Lemma 3.1, applying Proposition 2.8 we 

may fix a large integer n such that

h(Ũ ′
q,n) >

(
1 − ε

2

)
log q.

If p ∈ (1, q) is close enough to q, then

αi(p) = αi(q) for i = 1, . . . , n,

whence Ũ ′
q,n ⊆ Ũ ′

p by (2.1). It follows that

h(Ũ ′
p) >

(
1 − ε

2

)
log q.

Dividing by log p and applying Lemma 3.2 we infer that

D(p) >
(
1 − ε

2

) log q
log p .

We conclude by observing that the right side is > 1 − ε if p is close enough to q. �
We remark that for M = 1 a simple direct proof was given for the left continuity in 

q = 2 in [9, Proposition 4.1 (i)].

Lemma 4.2. The function D is right continuous in [q′, M + 1).
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Proof. Fix q ∈ [q′, M + 1) and ε > 0 arbitrarily. We have to show that if p ∈ (q, M + 1)
is sufficiently close to q, then |D(p) −D(q)| < ε.

Using Proposition 2.8 we fix a sufficiently large index n such that

h(W̃ ′
q,n) − h(Ũ ′

q,n) < ε log q
2 .

Next we fix pn ∈ (q, M + 1) sufficiently close to q, such that

βi(pn) = βi(q) for i = 1, . . . , n.

If p ∈ (q, pn), then using the inclusions

Ũ ′
q,n ⊆ Ũ ′

q ⊆ Ũ ′
p ⊆ W̃ ′

q,n

and applying Lemma 3.3 we obtain that

dimH πp(Ũ ′
q,n) =

h(Ũ ′
q,n)

log p and dimH πp(W̃ ′
q,n) =

h(W̃ ′
q,n)

log p .

Repeating the proof of Lemma 4.1 with Ṽ ′
q,n changed to W̃ ′

q,n, now we obtain the 
estimate

|D(p) −D(q)| ≤
h(W̃ ′

q,n)
log q −

h(Ũ ′
q,n)

log p ,

and we may conclude as before. �
In the next result we take any q ∈ (1, ∞).

Lemma 4.3. D has bounded variation in [q′, M + 1].

Proof. We prove that for every finite subdivision

q0 := q′ < q1 < · · · < qn = M + 1

the following inequality holds:

n∑
i=1

|D(qi) −D(qi−1)| ≤
2 log(M + 1)

log q′ − 1.

We know that q → h(U ′
q) is non-decreasing in [q0, M + 1] with h(U ′

q0) = 0 and 
h(U ′

M+1) = log(M + 1). Therefore we have the following elementary inequalities:

D(qi) −D(qi−1) =
h(U ′

qi) −
h(U ′

qi−1
)
≤

h(U ′
qi) − h(U ′

qi−1
)
≤

h(U ′
qi) − h(U ′

qi−1
)

log qi log qi−1 log qi log q0
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and

D(qi) −D(qi−1) ≥
h(U ′

qi−1
)

log qi
−

h(U ′
qi−1

)
log qi−1

≥ log(M + 1)
log qi

− log(M + 1)
log qi−1

.

It follows that

|D(qi) −D(qi−1)| ≤
h(U ′

qi) − h(U ′
qi−1

)
log q0

+
(

log(M + 1)
log qi−1

− log(M + 1)
log qi

)
,

and hence
n∑

i=1
|D(qi) −D(qi−1)|

≤
h(U ′

M+1) − h(U ′
q0)

log q0
+ log(M + 1)

log q0
− log(M + 1)

log(M + 1)

= 2 log(M + 1)
log q0

− 1,

as stated. �
5. The Hausdorff dimension of U

As usual, we denote by U the set of bases q > 1 in which x = 1 has a unique 
expansion, and by U ′ the set of corresponding expansions. We recall from [12] and [22]
that a sequence c = (ci) belongs to U ′ if and only if the lexicographic inequalities

c1c2 · · · < ck+1ck+2 · · · < c1c2 · · · (5.1)

are satisfied for all k ≥ 1.
Fix an integer N ≥ 2 and, inspired by the proof of [9, Proposition 4.1 (i)], consider 

the set Û ′
N of sequences c = (ci) ∈ {0, . . . ,M}∞ satisfying the equality

c1 · · · c2N = M2N−10,

and the lexicographic inequalities

0N < ckN+1 · · · ckN+N < MN

for k = 2, 3, . . . . All these sequences satisfy (5.1), so that Û ′
N ⊆ U ′ and ÛN ⊆ U , where 

we use the natural notation

ÛN :=
{
q ∈ (1,M + 1] : β(q) ∈ Û ′

N

}
.

(Here β(q) denotes the unique and hence also greedy expansion of x = 1 in base q.)
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It follows from the definition of Û ′
N that∣∣∣BnN (Û ′

N )
∣∣∣ =

(
(M + 1)N − 2

)n−2 for all n ≥ 2 (5.2)

and ∣∣∣BkN+1,nN (Û ′
N )

∣∣∣ =
(
(M + 1)N − 2

)n−k for all n ≥ k ≥ 2. (5.3)

Consider two elements p < q of ÛN , and let m be the smallest positive integer such 
that βm(p) �= βm(q). Then βm(p) < βm(q), and we deduce from the definition of ÛN

that (
m∑
i=1

βi(q)
qi

)
+ 1

qm+2N < 1 <

(
m∑
i=1

βi(p)
pi

)
+ 1

pm
≤

m∑
i=1

βi(q)
pi

.

Hence

1
qm+2N <

m∑
i=1

βi(q)
(
p−i − q−i

)
< M

∞∑
i=1

(
p−i − q−i

)
= M(q − p)

(p− 1)(q − 1)

and therefore

1
(M + 1)m+2N <

M(q − p)
(q′ − 1)2 ,

where q′ denotes the Komornik–Loreti constant as usual.
Setting

c := (q′ − 1)2

M(M + 1)2N

we conclude the following

Lemma 5.1. If p, q ∈ ÛN and 0 < q − p ≤ c(M + 1)−m for some positive integer m, then 
βi(p) = βi(q) for all i = 1, . . . , m.

Now we are ready to compute the Hausdorff dimension of U .

Proof of Theorem 1.6 (ii). Consider a finite cover ∪Ij of ÛN by intervals Ij of length 
|Ij | ≤ c(M + 1)−N . For each positive integer k we denote by Jk the set of indices j
satisfying the inequalities

c(M + 1)−(k+1)N < |Ij | ≤ c(M + 1)−kN .
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We fix a large integer n satisfying c(M + 1)−nN < |Ij | for all j; then Jk = ∅ for all 
k ≥ n.

If j ∈ Jk and p, q ∈ ÛN ∩ Ij , then the first kN digits of β(p) and β(q) coincide by the 

above lemma, so that at most 
∣∣∣BkN+1,nN (Û ′

N )
∣∣∣ elements of BnN (Û ′

N ) may occur for the 

bases q ∈ ÛN ∩ Ij . Hence

∣∣∣BnN (Û ′
N )

∣∣∣ ≤ ∑
k

∑
j∈Jk

∣∣∣BkN+1,nN (Û ′
N )

∣∣∣ .
Using (5.2) and (5.3) this is equivalent to

(
(M + 1)N − 2

)−2 ≤
∑
k

∑
j∈Jk

(
(M + 1)N − 2

)−k
.

Introducing the number σ = σ(N) ∈ (0, 1) by the equation

(M + 1)N − 2 = (M + 1)σN , (5.4)

we may rewrite the preceding inequality in the form

(M + 1)−2σN ≤
∑
k

∑
j∈Jk

(M + 1)−σNk.

Since

(M + 1)−Nk < c−1(M + 1)N |Ij |

by the definition of Jk, it follows that

(M + 1)−2σN ≤
∑
k

∑
j∈Jk

c−σ(M + 1)σN |Ij |σ

or equivalently

∑
j

|Ij |σ ≥ cσ(M + 1)−3σN .

Since the right side is positive and depends only on N , we conclude that dimH ÛN ≥
σ(N).

It follows from the definition (5.4) that σ(N) → 1 as N → ∞. Since ÛN ⊆ U ⊆ R for 
all N , letting N → ∞ we conclude that dimH U = 1. �
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6. Proof of Theorem 1.5 and the Lebesgue measure of U

Set B′ := {β(q) : q ∈ (1, M + 1]} for brevity.
Our main tool is a generalization of a reasoning in [11]. Given two positive integers 

n, t and a word η1 · · · ηn ∈ Bn(B′), the sets

{q ∈ [1,M + 1) : βi(q) = ηi, i = 1, . . . , n}

and {
q ∈ [1,M + 1) : βi(q) =

{
ηi, i = 1, . . . , n,
0, i = n + 1, . . . , n + t

}

are two intervals [q1, q2) and [q1, q3) satisfying q3 ≤ q2.

Lemma 6.1. The following inequality holds:

q3 − q1
q2 − q1

≥ (q1 − 1)3

M2qt+2
2

.

We stress the fact that the right side does not depend on n.

Proof. It follows from the greedy algorithm that

n∑
i=1

ηi
qi1

= 1, (6.1)

n∑
i=1

ηi
qi2

+
∞∑

i=n+1

M

qi2
≥ 1

and (
n∑

i=1

ηi
qi3

)
+ 1

qn+t
3

= 1. (6.2)

Using the first two relations and the relation η1 ≥ 1 we obtain that

M

qn2 (q2 − 1) ≥
n∑

i=1
ηi
(
q−i
1 − q−i

2
)
≥ q−1

1 − q−1
2 = q2 − q1

q1q2
.

Hence

(0 <)q2 − q1 ≤ Mq1q2
n . (6.3)

q2 (q2 − 1)
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Similarly, using (6.1) and (6.2) we obtain that

1
qn+t
3

=
n∑

i=1
ηi
(
q−i
1 − q−i

3
)
≤ M

∞∑
i=1

(
q−i
1 − q−i

3
)

= M

(
q−1
1

1 − q−1
1

− q−1
3

1 − q−1
3

)
= M(q3 − q1)

(q1 − 1)(q3 − 1) .

Hence

q3 − q1 ≥ (q1 − 1)(q3 − 1)
Mqn+t

3
. (6.4)

Combining (6.3) and (6.4), and using the inequalities q1 ≤ q3 ≤ q2 we conclude that

q3 − q1
q2 − q1

≥ (q1 − 1)(q3 − 1)
Mqn+t

3
· q

n
2 (q2 − 1)
Mq1q2

≥ (q1 − 1)3

M2qt+2
2

. �
In the next lemma λ denotes the usual Lebesgue measure.

Lemma 6.2. The following inequality holds for all 1 < p < r ≤ M +1 and for all positive 
integers n and t:

λ ({q ∈ [p, r) : βn+1(q) = · · · = βn+t(q) = 0}) ≥ (p− 1)3

M2rt+2 (r − p).

Before proving the lemma we recall that the bases q for which β(q) is finite form 
a (countable) dense set in [1, M + 1]. Indeed, if β(q) is infinite for some q, then the 
truncated sequences β1(q) · · ·βk(q)0∞ belong to B′ for all k = 1, 2, . . . by an elementary 
reasoning given in [23, Lemma 3.1]. Therefore there exist bases qk ∈ [1, M + 1] such 
that

β(qk) = β1(q) · · ·βk(q)0∞,

and then qk → q.

Proof. We use the notations of the preceding lemma.
We may assume by density that β(p) and β(r) are finite. Choose a sufficiently large 

integer n such that βi(p) = βi(r) = 0 for all i > n, and consider the intervals [q1, q2)
corresponding to n. Then some of these intervals form a finite partition of [p, r). Since 
we have

q3 − q1
q2 − q1

≥ (q1 − 1)3

M2qt+2
2

≥ (p− 1)3

M2rt+2
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for each of these intervals by the preceding lemma, the required inequality follows by 
summing the inequalities

q3 − q1 ≥ (p− 1)3

M2rt+2 (q2 − q1). �
Lemma 6.3. Given an arbitrary real number s > 1, there exists a sequence (nk) of natural 
numbers satisfying the inequalities

nk > logs (n1 + · · · + nk) , k = 1, 2, . . .

and the divergence relation

∞∑
k=1

s−nk = ∞.

Proof. For s = 2 this was proved in [12, Lemma 6]. The proof remains valid for every 
s > 1. �

Now we are ready to prove Theorem 1.5:

Proof of Theorem 1.5. By density it suffices to show for any fixed 1 < p < r ≤ M + 1, 
the required property holds for almost all q ∈ [p, r). For convenience we normalize λ and 
we use the equivalent probabilistic measure μ := λ

r−p on [p, r). Then we may adapt the 
usual proof of the Borel–Cantelli lemma.

Choose a sequence (nk) satisfying the conditions of the preceding lemma with s := r, 
and set

Cj :=

⎧⎨⎩q ∈ [p, r) :
n1+···+nj∑

i=n1+···+nj−1+1
βi(q) > 0

⎫⎬⎭ , j = 1, 2, . . . .

It follows from Lemma 6.2 and 6.3 that

μ
(
∩∞
j=kCj

)
≤

∞∏
j=k

(
1 − (p− 1)3

M2r2 r−nj

)
= 0

for every k = 1, 2, . . . .
Therefore C := ∪∞

k=1 ∩∞
j=k Cj has also zero Lebesgue measure. We complete the proof 

by observing that if q ∈ [p, r) \C, then β(q) has the required property for infinitely many 
m = n1 + · · · + nk. �

Finally we compute the Lebesgue measure of U :
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Proof of Theorem 1.6 (i). Since U\U is countable, it suffices to prove that U is a null set. 
Furthermore, it suffices to prove that U ∩ [p, M + 1) is a null set for each p ∈ (1, M + 1)
such that β(p) is finite.

It follows from the lexicographical characterization (5.1) of U that U ∩ [p, M +1) ⊆ C, 
where C is the null set in the proof of the above lemma, corresponding to the choice 
[p, r) = [p, M + 1). Hence U ∩ [p, M + 1) is a null set indeed. �
7. Proof of Theorem 1.7

In view of Theorems 1.1 and 1.4 it suffices to prove that D′ < 0 almost everywhere 
in (q′, ∞). This was implicitly proved in [24, Theorems 2.5 and 2.6]. Here we give an 
alternative proof.

Since U is a null set by Theorem 1.5 (i), it suffices to prove that D′ < 0 everywhere 
in each connected component I = (q0, q∗0) of (q′, ∞) \ U . Fixing p ∈ (q0, q∗0) arbitrarily, 
we deduce from Theorem 1.3 and Lemma 2.11 that

D(q) =
h(U ′

p)
log q

for all q ∈ I, and therefore

D′(q) = −
h(U ′

p)
q(log q)2

for all q ∈ I. Since p > q′ and therefore h(U ′
p) > 0 by Theorem 1.1, we have D′(q) < 0

for all q ∈ I indeed.

Remark. Since q′ and M + 1 are the smallest and largest elements of U , the first and 
last connected components of (1, ∞) \ U are (1, q′) and (M + 1, ∞).

We recall from [8] that the left and right endpoints of the remaining connected com-
ponents I = (q0, q∗0) run over U \ U and some proper subset U∗ of U , respectively.

It follows from some theorems of Parry [28] and Solomyak [33] that each element of 
U \ U is an algebraic integer, all of whose conjugates are smaller than the Golden Ratio 
in modulus.

On the other hand, it was proved in [24] that the points q∗0 , called de Vries–Komornik 
numbers, are transcendental. The smallest one is the Komornik–Loreti constant q′. Their 
expansions are closely related to the classical Thue–Morse sequence.
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